Continuous Glucose Monitoring: The Next Big Thing in Diabetes Self-Management?

Stephen Brietzke, M.D. Division of Endocrinology MU Health Care

Not All Innovations are Good Ideas!

Hydroelectric Power: The Home Edition

Yeah, but we got it done under budget!

The Glycemic Control Era in Diabetes

- HbA1c for accurately estimating glycemic average over time
 - Limitations
 - Does not reflect glycemic lability
 - Does not identify hypoglycemia
- Capillary blood glucose (fingerstick) monitoring for
 - Daily trends and variation
 - Urgent detection of hypoglycemia
 - Decision-making at point of care

The Double Edge of Glycemic Control

The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:977-986

HbA1c Over Time in DCCT/EDIC:

What's "Average" Control?

DCCT/EDIC Research Group. Diabetes Care 2014;37:9-16

Ideal Glycemic Measurement Day-to-day

- Accurate
- Comfortable
- Timely
 - Identify actionable trends
 - Provide data in real-time
- Convenient
- Merge blood glucose monitoring with other ADL's (work/home/recreation)

1950's-1970's: European Vacation Urine Dipstick Testing for Glucose

1980's: Color-Matching Blood Glucose Testing

1990's: Rise of the Machines (Digital Display Blood Glucose Meters)

2000's: Fast and Furious

2010-Present: The Clone Wars

Traditional Blood Glucose Self-Monitoring

Candidates for CGM

Qualifying Criteria (for insurance coverage)

- Using insulin (MDI or pump)
- Performing SMBG at least 4 times daily

Major Indications

- Patients who are *motivated* to use one!
- Hx of hypoglycemia unawareness
- Hx of extreme glycemic lability
- Very active or highly variable daily routines

Basic Types of CGM Devices

- Continuous
 - Dexcom G4/G5/G6
 - Medtronic
- Flash
 - Freestyle Libre
 - Eversense

CGM Tracings from a Clinical Trial

Pazos-Couselo M. Can J Diabetes 2015; 39:428-433

Anatomy of a CGM Sensor

Dexcom Transmitter & Receiver Options

Cell Phone App for Dexcom

Freestyle Libre CGM System

Eversense Implantable CGM System

How Accurate are CGM Devices?

Aberer F et al. Diabetes Obes Metab 2017; 19:1051-1055

	Abbott	Dexcom	Medtronic		
MARD \pm s.d., %					
Overall	13.2 ± 10.9	16.8 ± 12.3	21.4 ± 17.6		
	(n = 462)	(n = 540)	(n = 502)		
Exercise	8.7 ± 5.9	15.7 ± 14.6	19.4 ± 13.5		
	(n = 13)	(n = 24)	(n = 22)		
Hypoglycaemia	14.6 ± 10.2	23.8 ± 15.7	26.9 ± 20.0		
	(n = 81)	(n = 88)	(n = 87)		
Euglycaemia	13.7 ± 11.5	16.3 ± 11.6	21.0 ± 15.3		
	(n = 301)	(n = 362)	(n = 334)		
Hyperglycaemia	10.1 ± 7.9	11.6 ± 7.2	17.1 ± 21.9		
	(n = 80)	(n = 90)	(n = 81)		
ΔGlucose (maximum; minimum), mmol/L					
Exercise	1.7 (1.0; 4.5)	1.5 (1.3; 4.5)	1.9 (0.4; 4.3)		
Breakfast	3.6 (3.4; 6.5)	3.6 (2.5; 6.7)	3.4 (2.4; 6.4)		
Lunch	4.3 (2.6; 5.9)	4.8 (3.6; 7.3)	3.9 (2.3; 6.8)		
Dinner	0.4 (0.3; 0.4)	1.3 (0.2; 3.3)	1.8 (0.2; 2.7)		

New Concepts in Glycemic Control Introduced by CGM

- Time in Range
- % Hypoglycemic
- % Hyperglycemic

What Do We Learn From CGM's?

Boland E et al. *Diabetes Care* 24: 1858-1862; 2001

Excessive Postprandial Hyperglycemia is Common

Figure 2—Percentage of peak postmeal glucose levels over the target level of 180 mg/dl. \square , >300 mg/dl; \blacksquare , 214–300 mg/dl; \sqsubseteq , 181–240 mg/dl.

Boland E et al. *Diabetes Care* 24: 1858-1862; 2001

Nocturnal Hypoglycemia is Common

Figure 3—Percentage of patients with nadir night sensor glucose level in hypoglycemic range (either 41-60 mg/dl or $\leq 40 \text{ mg/dl}$) for 1, 2, or all 3 nights of CGMS use. \blacksquare , 41-60 mg/dl; \boxminus , $\leq 40 \text{ mg/dl}$.

Boland E et al. *Diabetes Care* 24: 1858-1862; 2001

Self-Reported vs. CGM-detected Hypoglycemia in 4-T Trial (UK; Insulin + Orals)

Levy JC et al. *Diab Research Clin Pract* 2017; 131: 161-168.

CGM vs SMBG: Effect on Hypoglycemia in T1DM

	CGM (n=62)	Control (n=58)
Age	25.7 ± 14.1	26.0 ± 14.6
% Male	58	67
BMI (Kg/m²)	22.4 ± 3.8	22.0 ± 3.8
HbA1c(%)	6.9 ± 0.6	6.9 ± 0.7
SMBG tests per day	5.3 ± 2.2	5.1 ± 2.5

Battelino T et al. *Diabetes Care* 34:795-800; 2011

Time in Hypoglycemia Range: FSG vs. CGM

Battelino T et al. *Diabetes Care* 34:795-800; 2011

HbA1c at 6 months: FSG vs. CGM

Battelino T et al. Diabetes Care 34:795-800; 2011

Change in HbA1c vs. Frequency of CGM Use

JDRF CGM Study Group. Diabetes Care 32: 1947-1953; 2009

GOLD Study: Impact of CGM on HbA1c in T1DM on MDI Crossover Design (Sweden)

- N = 161
- Mean age 44 years
- 55% male
- Mean Duration T1DM = 22 years
- Baseline HbA1c = 8.7%

GOLD Study: Adult Patients with T1DM, on MDI Regimens Effect of CGM (Crossover Design)

GOLD Study Group. *JAMA* 317: 379-387; 2017

CGM vs. FSG in Intensive Insulin Rx for T1DM (Age ≥ 25 only)

	CGM (n = 52)	FSG [Control] (n = 46)
Age (years)	41.2 ± 11.2	44.6 ± 12.3
% Female	60%	57%
Duration of T1DM (years)	23.6 ± 10.6	21.8 ± 10.4
HbA1c (%)	7.6 ± 0.5	7.6 ± 0.5
Insulin pump	83%	85%
# of FSG tests per day	6.5 ± 2.3	6.6 ± 2.2

JDRF Study Group. *NEJM* 2008; 359: 1464-1476.

Additive Effect of CGM to Intensive Rx T1DM: JDRF Study

JDRF Study Group. *NEJM* 2008; 359: 1464-1476.

Adult Patients with T1DM, on MDI Regimens: Effect of CGM

DIAMOND Study Group. *JAMA* 317: 371-378; 2017

Patient Snapshot #1: 39 y/o man,T1DM x 10 years, on MDI

Patient Snapshot #2: 41 y/o man with T1DM x 26 years; on MDI

DIAMOND Study: CGM in T2DM on MDI Insulin Regimens Subject Characteristics

	CGM (n=79)	Control (n=79)
HbA1c	8.5%	8.5%
Age (years)	60 ± 11	60 ± 9
BMI (kg/m ²)	35 ± 8	37 ± 7
Non-insulin Rx	71%	66%
Reduced hypoglycemic awareness	32%	22%

Beck RW et al. *Ann Intern Med* 2017; 167: 365-374

Impact of CGM in T2DM with MDI Regimens: DIAMOND Study

@ 24 Weeks	CGM Group	SMBG Group	P value
HbA1c	7.7%	8.0%	0.02
Mean blood glucose	171 mg/dl	171 mg/dl	N.S.
Time in Range (70-180 mg/dl)	882 min/24 hrs	836 min/24 hrs	<0.001
Time < 70 mg/dl	4 min/24 hrs	12 min/24 hrs	<0.001

Beck RW et al. *Ann Intern Med* 2017; 167: 365-374

CGM vs. SMBG (Fingerstick) Testing: T1DM (children) Poolsup N. Diabetol Metab Syndr 2013;5: 39-53.

CGM vs. SMBG (Fingerstick) Testing: T2DM (adults) Poolsup N. Diabetol Metab Syndr 2013;5: 39-53.

	(CGM SMBG		Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Allen 2008	7.7	1.23	21	8.1	0.87	25	21.7%	-0.40 [-1.03, 0.23]	
Cosson 2009	8.59	1.04	11	8.76	1.43	14	9.1%	-0.17 [-1.14, 0.80]	
Eharhard 2011	7.4	1	50	7.7	1.2	50	45.4%	-0.30 [-0.73, 0.13]	
Yoo 2008	8	1.2	29	8.3	1.1	28	23.9%	-0.30 [-0.90, 0.30]	
Total (95% CI)			111			117	100.0%	-0.31 [-0.60, -0.02]	•
Heterogeneity: Chi ² = 0.16, df= 3 (P= 0.98); I ² = 0%									
Test for overall effect:	Z = 2.08	(P = 0	1.04)						Favours [CGM] Favours [SMBG]

Impact of CGM on Hospitalizations & Missed Work in Insulin Pump-Treated T1DM: Belgian Study

	Before Reimbursement (n = 496)	12 Months of Reimbursement (n = 379)	P Value
Patients with			
Hospitalizations due to hypoglycemia and/or ketoacidosis	77 (16%)	14 (4%)	< 0.0005
Hospitalizations due to hypoglycemia	59 (11%)	12 (3%)	< 0.0005
Hospitalizations due to ketoacidosis	23 (5%)	4 (1%)	0.092
Work absenteeism ^a	123 (25%)	36 (9%)	< 0.0005
Days (per 100 patient years) of			
Hospitalizations due to hypoglycemia and/or ketoacidosis	53.5	17.8	< 0.0005
Hospitalizations due to hypoglycemia	38.5	12.5	0.001
Hospitalizations due to ketoacidosis	14.9	5.3	0.220
Work absenteeism	494.5	233.8	0.001

Charleer S. et al. *J Clin Endocrinol Metab* 2018; 103: 1224-1232.

Impact of CGM on Hospital and ED Admissions and Cost

Parkin CG. *J Diabetes Sci Technol* 2017; 11: 522-528.

CGM in Hospital Inpatients

Bally L et al. Closed-Loop Insulin Delivery for glycemic control in non-critical care. *NEJM*; June 25 2018 on-line

Subject Characteristics: Closed Loop Insulin Pump vs. MDI w/CGM in T2DM

Table 1. Characteristics of the Patients at Baseline.*						
Characteristic	Closed-Loop Group (N = 70)	Control Group (N = 66)				
Male sex — no. (%)	50 (71)	43 (65)				
Age — yr	67.7±10.1	67.1±13.0				
Body-mass index†	32.7±8.2	32.3±8.1				
Glycated hemoglobin						
Percentage	8.1±1.9	8.0±1.9				
Mean value — mmol/mol	65±21	64±21				
Duration of diabetes — yr	17.1±11.2	15.5±11.2				
Duration of insulin therapy — yr	10.0±9.1	8.0±9.1				
Total daily insulin dose — U	64.2±59.4	50.6±38.9				

Set-Up for Closed Loop Insulin Pump with CGM (Inpatient Study)

Figure S1. Automated fully closed-loop insulin delivery prototype (FlorenceD2W-T2) used in the study (photo obtained with consent).

Closed Loop Insulin vs. MDI Insulin in T2DM Inpatients

Outcomes: Closed Loop Insulin Pump vs. MDI with CGM in T2DM Inpatients

	Closed-Loop	MDI	P value
Nocturnal BG avg.	129 ± 24	160 ± 49	<0.001
% Time in Range (100-180 mg/dl)	74 ± 19	54 ± 25	<0.001
Daytime BG avg.	165 ± 36	204 ± 46	<0.001
% Time in Range (100-180 mg/dl)	62 ± 19	35 ± 19	<0.001
% Hypoglycemia (< 60 mg/dl)	0	0	N.S.
Mean Daily Insulin Dose	44	40	N.S.

Predicting the Future of Continuous Glucose Monitoring

Predicting the Future of Continuous Glucose Monitoring

- Contact lens
- Salivary sampling
- 365-day implantable sensor
- Glucose-sensing tattoo

Conclusions

- At present time, CGM can be recommended for most patients with either T1DM or T2DM who
 - Use MDI or CSII (insulin pump)
 - Perform at least 4 SMBG tests per day
 - Are motivated and willing to wear the device 24/7
- Accuracy of monitoring can largely obviate SMBG fingersticks
- Payers are gradually taking the hint (getting MediCare/CMS on board was huge!)
- Can expect this technology to improve rapidly, possibly becoming non-invasive in next iterations

Well-Koalafied for Success with Diabetes!

