Case Based Discussions of Electrolyte and Acid-Base Disorders

Timothy Yau, M.D.
Assistant Professor of Medicine

Department of Medicine
Division of Nephrology
Review of the Kidney’s Functions

- Salt and Water balance
- Acid-base balance
- Electrolyte balance
- Bone-Mineral Metabolism
- Erythropoietin production
Complications of CKD in relation to GFR

<table>
<thead>
<tr>
<th>GFR ml/min</th>
<th>Stage 5</th>
<th>Stage 4</th>
<th>Stage 3</th>
<th>Stage 2</th>
<th>Stage 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Hypertension/Edema</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2º Hyperparathyroidism</td>
<td>Anemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Hyperkalemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Metabolic Acidosis</td>
<td>Uremic symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HYPERKALEMIA
CASE 1

- 60 year old male with CKD IV secondary to DM, HTN (baseline SCr 3.6 mg/dL) is seen by his regular nephrologist for routine management. Blood pressure and sugars are well controlled.

- Meds include lisinopril 40 mg/day, amlodipine 10 mg/day, metoprolol 50 mg BID, ASA 81 mg/day, insulin

- Na 136 K 5.8 Bicarb 19 BUN 61 Cr 3.8
- Glucose 160 HbA1C 7.1
What would you do next in your office?

- Counsel him on a low potassium diet
- Stop/decrease the lisinopril
- Stop/decrease the metoprolol
- Start oral bicarbonate
- Start him on chronic kayexhelate therapy
- Monitor conservatively
- Start him on dialysis
HYPERKALEMIA IN CKD

- GFR < 30 ml/min
- Can occur earlier in
 - Diabetes mellitus
 - Type IV RTA
 - Sickle Cell Anemia
 - Obstruction
 - Tubulointerstitial disease

ETIOLOGY

- Dietary indiscretion
- Iatrogenic
 - ACE inhibitors & ARBs
 - Beta-blockers
 - K-sparing diuretics
 - Septra ®/Bactrim®
 - NSAID’s/COX II Inhibitors
 - Cyclosporine and Tacrolimus
 - Heparin
CONTROL OF POTASSIUM

Goal of K+ - 4.0-5.0 mEq/L
- Dietary Modifications
- Stop causative meds
- Correct acidosis
- Loop Diuretics
- AVOID NSAIDS and COX II Inhibitors

K+ level of 5-5.6 mEq/L is acceptable, provided the patient has regular follow-up.

Otherwise........
- ?Potassium Binding Resins
- Stop/Reduce ACE-I, ARB
QUESTION

How much potassium can be removed with a typical 30 gram dose of Kayexelate, assuming maximal exchange and excretion?

1) 10 mEq
2) 15 mEq
3) 30 mEq
4) 60 mEq
5) 90 mEq
Newer Agents – Zirconium Cyclosilicate

ZS-9 Crystal Structure

ZS-9 PROPERTIES
- Unique microporous zirconium silicate compound
- Designed to be selective for K⁺ trapping
- Insoluble and highly stable
- Non-systemically absorbed
- Builds on long history of Zr use in dialysis and other biomedical applications

Average Width of Micropore Opening 3Å
Potassium, Calcium, and Magnesium Concentration Ratio (1:1:1)

ZS-9 Ion Binding

- K+ binding: 96
- Ca2+ binding: 2**
- Mg2+ binding: 2**

Selectivity Ratio

- K+/Ca2+ selectivity: >25**
- K+/Mg2+ selectivity: 2**

Kayexalate Ion Binding

- K+ binding: 18
- Ca2+ binding: 59
- Mg2+ binding: 24

KEY OBSERVATIONS

- ZS-9 has 9.3 times more K+ binding capacity than Kayexalate® (SPS)
- ZS-9 is >125 times more selective for K+ than Kayexalate
- Kayexalate is more selective for Ca2+ than K+
A

Serum Potassium (mmol/liter)

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.4

Hour

Placebo (N=158)
ZS-9, 5 g (N=157)
ZS-9, 10 g (N=143)

Dose *P<0.05

NEJM – Packham, 2015
A Time to First Serum Potassium Level ≥5.5 mmol/liter

Patients with Recurrent Hyperkalemia (%)

Week of Withdrawal Phase

No. at Risk
Placebo 52 46 38 31 29 25 25 23 15
Patiromer 55 53 49 48 45 43 42 42 32
Adverse Events

Table 2. Adverse Events during the Initial Treatment Phase and through the Safety Follow-up Period for That Phase.

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 Adverse event†</td>
<td>114 (47)</td>
</tr>
<tr>
<td>Constipation</td>
<td>26 (11)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Nausea</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Anemia</td>
<td>7 (3)</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>7 (3)</td>
</tr>
<tr>
<td>≥ 1 Serious adverse event†</td>
<td>3 (1)</td>
</tr>
</tbody>
</table>

Table 3. Adverse Events during the Randomized Withdrawal Phase and through the Safety Follow-up Period for That Phase.

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Placebo (N = 52) no. of patients (%)</th>
<th>Patiromer (N = 55) no. of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 Adverse event</td>
<td>26 (50)†</td>
<td>26 (47)</td>
</tr>
<tr>
<td>Headache</td>
<td>4 (8)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Supraventricular extrasystoles</td>
<td>1 (2)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Constipation</td>
<td>0</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
<td>2 (4)</td>
</tr>
<tr>
<td>≥ 1 Serious adverse event</td>
<td>1 (2)‡</td>
<td>0</td>
</tr>
</tbody>
</table>
METABOLIC ACIDOSIS
CASE 2

- A 30 year old African American female with FSGS since childhood has progressed to CKD IV-V, Cr is 4.0 mg/dL. She is listed for a pre-emptive transplant and is hoping to avoid dialysis.

- She denies nausea, vomiting, weight loss, poor appetite, fatigue, decreased urine output, or edema

- On exam her blood pressure is 125/82, she is very comfortable, has no edema, and her cardiovascular exam is normal

- Na 136 K 5.1 Bicarb 16 BUN 48 Cr 4.1
Is oral bicarbonate indicated in this patient?

• If so, what benefits would initiation of bicarbonate confer to this individual?

 • Delay in progression of her CKD
 • Improvement in serum potassium
 • Improved bone health
 • Reduce muscle wasting
METABOLIC ACIDOSIS

- Occurs in most CKD patients, usually at GFR < 30 ml/min

- Consequences:
 - Increased muscle catabolism with muscle wasting
 - Increased risk for bone loss and secondary hyperparathyroidism
 - ?CKD progression

- Treatment: Sodium Bicarbonate to maintain CO$_2$ levels > 22mEq/L
NH₄⁺ Production increases with intracellular acidosis
Covesdy, NDT 2012

- CKD stage 1: 7%
- CKD stage 2: 17%
- CKD stage 3B: 24%
NaHCO₃ therapy and CKD progression

Brito-Ashurst, JASN 2009
QUESTION

• How many mEq of bicarbonate is in a standard 650 mg tablet of NaHCO3?

1) 8 mEq
2) 15 mEq
3) 30 mEq
4) 65 mEq
- NaHCO₃ molecular weight = 84 g/mol
- 1 tablet = 650 mg
- 84,000 mg = 1 mol = 1000 mmol = 1000 mEq
- 84 mg = 1 mEq
- 650 mg = 7.8 mEq
ALKALI REPLACEMENT OPTIONS

<table>
<thead>
<tr>
<th>sodium bicarbonate</th>
<th>potassium citrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>650 mg</td>
<td>10 mEq</td>
</tr>
</tbody>
</table>
ALTERNATIVELY, BUT STILL UNAPPEALING....

- 1/8 teaspoon = 600 mg NaHCO$_3$ = 7 mEq
BICARBONATE SUPPLEMENTATION

• Daily production of non-volatile acid is typically 50-100 mEq/day

• Supplementation typically not necessary until late stages of CKD

• A regimen of 2-3 650 mg tabs BID is enough to replace the buffered bicarbonate

• Once dialysis is initiated, bicarbonate supplementation not needed
DYSNATREMIA
CASE 3

• 40 year old female with CKD3 2/2 lupus nephritis, baseline Cr 1.8. Recently treated with high dose prednisone/Cyclophosphamide induction, recently tapered off steroids and maintained on Cellcept.

• Na 128 K 5.8 HCO3 22 BUN 32 Cr 1.8

• Which tests should be considered?
 • Urine osmolality
 • Serum ADH level
 • Urine sodium
 • TSH
 • A.M. Cortisol
PHYSIOLOGY OF DYSNATREMIA

- Gradual development of isosthenururia

Normal urine osmolality

Serum Osm 300

Urine osmolality in advanced CKD

1200

500

50

150
WHAT CAUSES HYponATREMIA?

Physiologic
- Volume depletion
- Pain
- Nausea
- Hypothyroidism
- Adrenal insufficiency

Pharmacologic
- Thiazide diuretics
- SSRIs
- TCAs
- Opiates
- AEDs
• **Thiazides**
 - Enhances Na excretion
 - Impairs ability of kidney to maximally dilute

• **Loop Diuretics**
 - Enhances Na and water excretion
 - Washes out medullary concentration gradient
HYPERNATREMIA

• Excess water losses by the kidney (low urine osmolality). Hypernatremia develops only in the setting of impaired access to water or impaired thirst mechanism

• Kidney diseases that can predispose to hypernatremia include:
 • Lithium use
 • Loop diuretics
 • Medullary cystic kidney disease
 • Hypokalemia
 • Postobstructive diuresis
THE TAKEAWAY POINT

HYponatremia

• Too much water!

• Urine should be maximally dilute (low urine osm)

• Treat by restricting water and enhancing water excretion

HYPernatremia

• Not enough water!

• Urine should be maximally concentrated (high urine osm)

• Treat by giving water
BONE MINERAL DISEASE
CASE 4

- 65 year old woman with CKD4 2/2 DM (SCr 3.0 mg/dL) undergoes a DEXA scan which reveals osteopenia. She has been taking calcium carbonate supplements for the past year over the counter. She has never seen a nephrologist.

- What is the most appropriate next step?
 - Check parathyroid hormone (PTH)
 - Check 25-OH Vit D level
 - Check 1, 25-OH Vit D level
 - Start bisphosphonate
Let’s Meet the Players

• Parathyroid Hormone (PTH)
• Vitamin D / Active Vitamin D
• Fibroblast Growth Factor (FGF) -23
• Klotho Co-Factor
Parathyroid Hormone

- PTH is the primary defense against hypocalcemia, used in the minute-to-minute regulation of serum iCa$^{++}$

Riccardi et al, Archives of Med Res, 1999
Parathyroid Hormone

Ca++

CaSR
Parathyroid Hormone

At the bone, PTH promotes osteoclast differentiation and bone resorption, mobilizing calcium (and phosphorus)
Parathyroid Hormone

At the kidney, PTH stimulates calcium resorption in the distal nephron. . .

(AND, phosphorus excretion proximally...)

AND, vitamin D activation
Parathyroid Hormone

PTH promotes hydroxylation at the 1α-position “activating” vitamin D (calcitriol)
Parathyroid Hormone

This active vitamin D then facilitates calcium (and phosphorus) absorption in the GI tract
Calcium Homeostasis

As calcium drops...
Phosphorus Homeostasis
FGF23

• Fibroblast growth factor (FGF) 23 has been identified as a significant phosphaturic factor

• It is produced by osteocytes and osteoblasts primarily in response to elevated phosphorus levels
FGF23

“Oncogenic Osteomalacia”

FGF23 overproduction
Renal phosphorus wasting
Persistent hypophosphatemia
Calcitriol deficiency

PROXIMAL TUBULE

25-OH Vitamin D

1,25-(OH)₂ Vitamin D

Na⁺

Pi

P2T2a

NPT2a, NPT2c
Phosphorus Homeostasis

As phosphorus rises

PO₄

PTH

FGF23

Department of Medicine
Division of Nephrology
Parathyroid Hormone

FGF23

FGFR-1

KLOTHO

K
Mineral Homeostasis

• And so, that is what is supposed to happen when everything works. . .

• **Calcium** is primarily regulated by **PTH**
 • Active Vitamin D regulates PTH

• **Phosphorus** is regulated by **FGF23**
Phosphorus Homeostasis

1200 mg

400 mg

800 mg
Phosphorus Homeostasis

1200 mg

800 mg
Kidney Dysfunction

1,25 Vit D deficiency
Low Ca absorption
High phosphorus

Ca
PO₄

FGF23

PTH
Kidney Dysfunction

KLOTHO
Reduced in CKD
Kidney Dysfunction

SECONDARY HYPERPARATHYROIDISM!

- Low 1,25 Vit D
- Low Calcium
- High Phosphorus
- Low Klotho
- Loss of VDR/CaSR
CONCLUSION

• **HYPERKALEMIA** – New and safer binders are now available if you cannot control the potassium with medication adjustments or dietary restriction.

• **METABOLIC ACIDOSIS** – Bicarbonate should be considered in patients who cannot maintain a bicarbonate above 18-20 mEq/L and several options exist.

• **DYSNATREMIA** – Too much water or not enough water. Restrict water or give water.

• **BONE AND MINERAL METABOLISM** – It’s complicated...
THANK YOU!!!